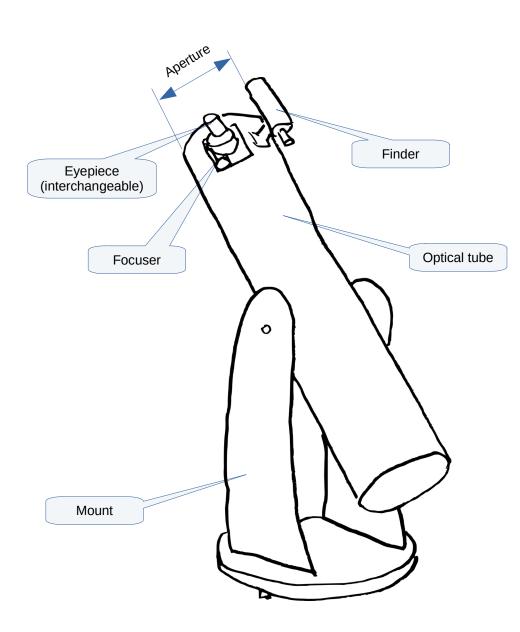

Visual Telescope Buying Guide

By Emile Cormier

With feedback from members of the Royal Astronomical Society of Canada, New Brunswick Centre

This guide is intentionally vendor-neutral and does not recommend any specific brands or models. This guide focuses on telescopes that allow direct visual viewing.



Released under the Creative Commons
Attribution-NonCommercial-ShareAlike License - CC BY-NC-SA
https://creativecommons.org/licenses/by-nc-sa/4.0

Version 2.1, 2025-04-20 This guide can be downloaded for free at https://rascnb.ca/telescope-buying-guide

Telescope Basics

Aperture: Diameter of the objective lens or primary mirror It is the main performance indicator of any telescope.

More aperture means:

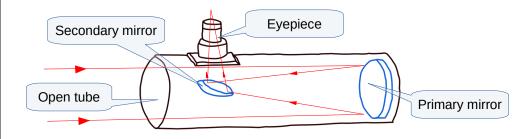
- · More light gathering power.
- Faint objects (galaxies, nebulas) are brighter.
- More magnification possible to see finer details (limited by atmospheric conditions – see below).
- · Narrower fields of view.
- A bulkier, heavier, and more costly instrument.

How much aperture? It depends on:

- Your budget.
- Your desired portability.
- Your desired performance.
- Your desired field of view range (wide vs. narrow).

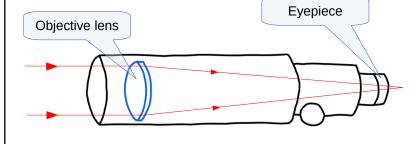
<u>Magnification</u>: Ratio between apparent size and true size

Also called "power". It is determined by the *focal length* of the telescope and the eyepiece that's being used (eyepieces are interchangeable). It is fixed in most binoculars.

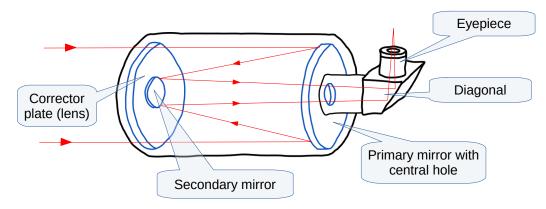

Magnification is limited by one of two factors:

- The telescope's aperture: ×50 per inch of aperture.
- The steadiness of the atmosphere (called seeing).

Atmospheric seeing depends on your climate and geography, but it generally limits useful magnification to around ×200 on most nights.

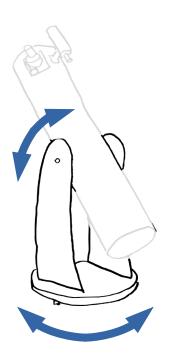

Common Optical Tube Types

Reflector (aka Newtonian)


- One looks through the *side* of the tube with this type, not the back.
- Quite affordable when bundled with a simple Dobsonian mount
- Less prone to dew than other types
- Requires occasional *collimation* (re-alignment of the mirrors)
 - A laser collimator tool makes this quick and easy.
 - Astronomy clubs can do this for free at their meetings.

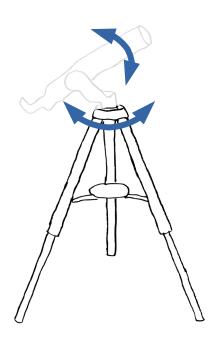
Refractor

- Limited to smaller apertures (large ones are very expensive)
- Maintenance-free no collimation required
- Achromatic refractors show discoloration of bright objects at high magnification (called *chromatic aberration*) best used at low power.
- *Apochromatic* refractors show no discoloration but are more expensive this is the most recommended refractor type for deep sky astrophotography.
- Makes a good portable "grab & go" telescope when paired with an altazimuth mount
- Mass-produced kits have flimsy mounts & lousy accessories. Best to purchase the mount & accessories separately. Seek recommendations from experienced observers.
- Also good for terrestrial and solar viewing with proper accessories

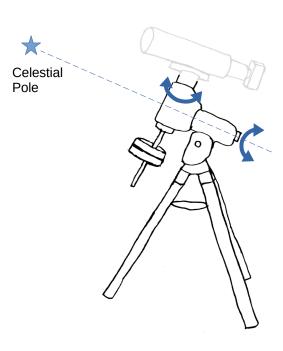

Schmidt-Cassegrain (aka SCT)

- · Optical design combines lenses and mirrors
- More compact than a reflector of the same aperture, but also more expensive
- Usually bundled with a computerized mount in telescope kits
- Field of view is narrower than other types makes it difficult to obtain good deep sky imaging results. Choose an apochromatic refractor instead for deep sky imaging.
- Good for planetary/lunar imaging using specialized cameras and processing techniques
- Best compromise for both visual and imaging, but not particularly well-suited wide-field deep sky imaging

Common Mount Types


Dobsonian

- Simple wooden box
- Simple left-right / up-down motions
- Always bundled with *reflector* optical tube
- · Very cost-effective
- Not very portable



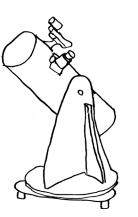
Altazimuth

- Simple left-right / up-down motions
- Folds down for compact transportation
- Some include slow-motion controls to aid in tracking objects
- Those bundled in telescope kits are usually inadequate – better to buy components separately. Seek recommendations from experienced observers.
- A Dobsonian mount is cheaper for telescope apertures larger than 4 inches

German Equatorial

- Axes of rotation are relative to the celestial pole for better tracking
- Motions are not intuitive
- This is the mount type required for longexposure deep sky astrophotography
- Requires polar alignment for accurate tracking in astrophotograhy
- Those bundled in cheap telescope kits are almost always inadequate.
- Does not pair well with reflector tubes for visual use – eyepiece ends up in awkward positions

Telescopes for under \$1500 (CAD)


Binoculars

Price: < \$250 Complexity: Trivial Portable: Extremely Field of view: Very wide Aperture: 42 - 80mm

- 10×50s are the max for handheld use; 8×42s are easier to hold steady.
- Powers above ×10 need tripod mount for stability
 - Camera tripod can work, video and spotting scope tripods are better
 - Need binocular mounting L-bracket (sold separately)
- Some people can't merge left/right images. Borrow a good working pair if you've never tried.
- Lowest cost for observing the night skies

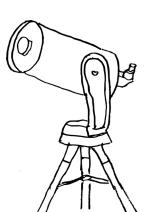
Tabletop Dobsonian (reflector)

Price: Starts at \$380 Complexity: Simple Portable: Very Field of view: Very wide Aperture: 4.5 - 5 inches

- Requires table or stool the sturdier the better
- Avoid spherical mirrors only buy parabolic.
- Prefer closed tube models (or make a shroud).
- Makes a good "grab & go" scope
- Better than department store telescopes for those on a tight budget

Dobsonian-Mounted Reflector (aka Dobsonian)

Price: Starts at \$640 Complexity: Simple


Portable: Not very Field of view: Wide

Aperture: 6 - 10 inches

- Most light gathering bang per buck
- Good for deep sky objects and planets
- Adjustable-height chair recommended
- · 8" dobsonian is a good place to start.

Computerized Single-Arm Schmidt-Cassegrain

Price: Starts at \$940 Complexity: Intermediate Portable: Quite Field of view: Narrower

Aperture: 4 - 8 inches

- Mount head moves to track objects.
- Needs star alignment at every setup
- Good for planetary imaging (with specialized camera and processing techniques)
- Deep sky imaging possible with additional wedge, but results may be disappointing
- Balances portability with performance while featuring go-to capability

Telescopes for over \$1000 (CAD)

Truss Tube Dobsonian

- More set-up time vs solid tube
- Needs collimation more often vs solid tube
- Shroud covering truss poles is recommended.
- More compact for travel vs solid tube

Push-To Dobsonian

Price: Starts at \$1100 Complexity: Fairly simple Portable: Not very Field of view: Wide

Aperture: 8 - 12 inches

Needs power: No Go-to: No

- Phone can be attached to guide user where to push tube to find objects
- No motors or gears that can fail
- Good for urban use where star-hopping is not possible

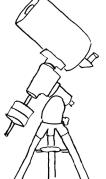
Go-To Dobsonian

Price: Starts at \$2000
Complexity: Intermediate
Portable: Not very
Field of view: Wide
Aperture: 8 - 16 inches

- Needs power: Yes Go-to: Yes
- Needs star alignment at every setup
- · Good for planetary imaging
- No deep sky imaging
- Lowest cost go-to for medium aperture

Fork-Mount Schmidt-Cassegrain

Price: Starts at \$3600 Complexity: Intermediate

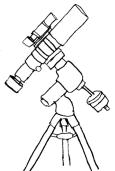

Portable: Depends Field of view: Narrower

Aperture: 8 - 16 inches

Needs power: Yes Go-to: Yes

- Needs star alignment at every setup
- Good for planetary imaging
- Deep sky imaging possible with additional wedge, but results may be disappointing
- Larger models are quite heavy.
- Cannot use other optical tubes with mount.
- Balances aperture, portability, and setup time while providing go-to ability

Schmidt-Cassegrain on Equatorial Mount



Price: Starts at \$2400
Complexity: Advanced
Portable: Somewhat
Field of view: Narrower
Aperture: 6 - 16 inches

Needs power: Yes Go-to: Yes

- Needs star alignment at every setup
- Needs polar alignment at every setup
- · Good for planetary imaging
- Deep sky imaging possible, but challenging
- · Can use other optical tubes with mount
- · Best compromise for both visual/imaging

Apochromatic Refractor on Equatorial Mount (for imaging)

Price: At least \$2500 Complexity: Advanced

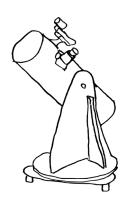
Portable: Quite

Field of view: Very wide Aperture: 3 - 5 inches

Needs power: Yes Go-to: Yes

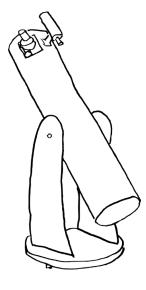
- Needs star alignment at every setup
- Needs polar alignment at every setup
- 80mm is a good place to start.
- Not enough aperture for planetary imaging
- Can use other optical tubes with mount
- Ideal for deep sky imaging short focal length is more forgiving

Which Telescope Under \$1500 is Right for Me?


Binoculars

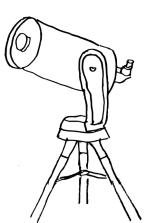
I want:

- ✓ To spend less than \$250.
- ✓ A portable grab & go instrument.
- ✓ A simple instrument.
- ✓ To find objects myself using charts.
- ✓ To learn the night sky before buying a telescope.


Tabletop Dobsonian

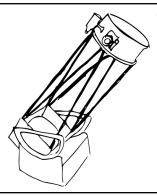
I want:

- ✓ To spend less than \$600.
- ✓ A gift for my child (or myself).
- ✓ A portable grab & go instrument.
- ✓ A simple instrument.
- To find objects myself using charts or attach my phone for push-to guidance.


Dobsonian-Mounted Reflector

I want:

- ✓ Lots of aperture for my money.
- ✓ To observe planets in detail.
- ✓ To observe faint deep sky objects.
- ✓ A simple instrument.
- \checkmark To find objects myself using charts.


Computerized Single-Arm Schmidt-Cassegrain

I want:

- ✓ A tripod-mounted portable instrument.
- ✓ A compact optical tube with decent aperture.
- ✓ A fairly technical instrument.
- ✓ Go-to capability and tracking.
- ✓ To observe planets in detail.
- ✓ To observe faint deep sky objects.

Which Telescope Over \$1000 is Right for Me?

Truss Tube Dobsonian

I want:

- ✓ Lots of aperture for my money.
- ✓ A simple visual instrument.
- ✓ To find objects myself using charts.
- ✓ A large dobsonian that breaks down into smaller pieces for transport.

Fork-Mount Schmidt-Cassegrain

I want:

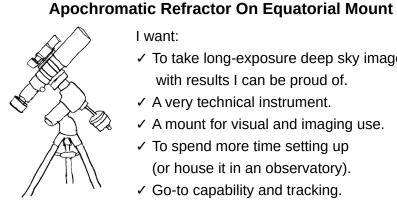
- ✓ A fairly technical visual instrument.
- Go-to capability and tracking.
- ✓ A tripod and a compact optical tube.
- ✓ To take planetary images.
- ✓ More aperture and stability than a single-arm altazimuth mount.

Push-To Dobsonian

I want:

- ✓ Lots of aperture for my money.
- ✓ A simple visual instrument.
- ✓ To attach my phone to find objects.
- ✓ A way to find objects in light-polluted skies.
- ✓ An instrument without motors or gears that can break down.

Schmidt-Cassegrain on Equatorial Mount


I want:

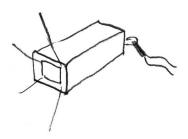
- ✓ A very technical instrument.
- ✓ A mount for visual and imaging use.
- ✓ A compact optical tube for visual use.
- ✓ To spend more time setting up (or house it in an observatory).
- ✓ Go-to capability and tracking.
- ✓ To take planetary images.
- ✓ To dabble in deep sky imaging*.

Go-To Dobsonian

I want:

- ✓ Lots of aperture for my money.
- ✓ A fairly technical visual instrument.
- ✓ Go-to capability and tracking.
- ✓ To take planetary images.

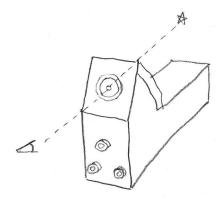
I want:


- ✓ To take long-exposure deep sky images with results I can be proud of.
- ✓ A very technical instrument.
- ✓ A mount for visual and imaging use.
- ✓ To spend more time setting up (or house it in an observatory).
- ✓ Go-to capability and tracking.

* Schmidt-Cassegrains have narrow fields of view, so it's much more difficult to achieve good deep sky imaging results. An apochromatic refractor is recommended for deep sky astrophotography novices.

Useful Upgrades and Accessories

Red Flashlight or Headlamp (essential)

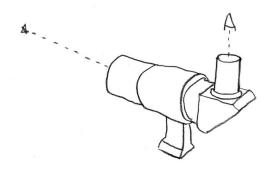

- Preserves dark-adaptation
- Dimmable is better
- Those with lanyards to wear around your neck can free your hands.
- Can dim with layers of tape/paper

Star Charts and Atlases

- Essential for manual telescopes
- More reliable than mobile apps
- Some show *Telrad* reticles for bright objects (aka *Telrad charts*).

Reticle Finder

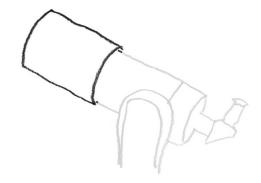
- Projects illuminated circles that measure angular distance.
- Used to find objects at known angular distance from stars.
- Telrad and Rigel Quikfinder are most common.


Laser Collimator (for reflector telescopes)

- Easiest way to realign reflector mirrors yourself
- Inserts into focuser drawtube (where eyepiece normally goes)
- Cheap ones are not always accurate.

More Useful Upgrades and Accessories

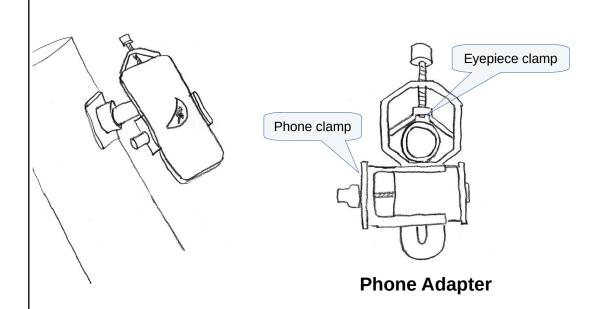
Right-Angle Correcting Image (RACI) Finderscope


- Less magnified view than main optical tube easier to find objects
- Right-angle allows comfortable viewing.
- Correcting image matches orientation of the object in the sky.

Wide Angle Eyepiece

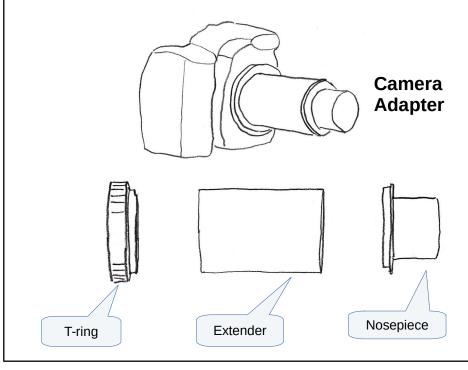
- Useful for very wide objects
- "Spaceship porthole"-like experience
- Makes it easier to find objects before switching to higher power.
- Get recommendations for your specific telescope from experienced observers before buying.

Dew Shield (for Schmidt-Cassegrain Telescopes)


- Wraps around end of optical tube to make objective lens less exposed
- Prolongs time before front lens gets covered in dew
- Can be made at home with suitably flexible and rigid material

Dew Heaters

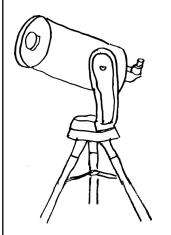
- Heated hook-and-loop straps that apply gentle heat
- Prevent lenses and mirrors from getting covered in dew
- Require a dew controller and power source
- Never wipe dew off optics!


Gear for Taking Snapshots of the Moon

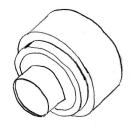
The Moon is the **only** nighttime celestial object that's bright and wide enough to be photographed as a **single snapshot** and produce satisfying results.

Just about any decent telescope will allow you to take snapshots of the moon.

A *phone adapter* makes it easier to hold up and aim a phone camera against a telescope eyepiece.



Prime focus astrophotography (without a camera lens) using a digital camera requires:


- A camera t-ring adapter.
- Possibly a t-thread extender (sometimes combined with the nosepiece) – needed to achieve the required backfocus distance on certain Newtonian or refractor telescopes.
- A t-thread nosepiece for Newtonian and refractor telescopes.
- A t-thread to SCT adapter for Schmidt-Cassegrain telescopes.

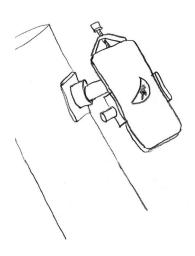
There are camera adapter kits that combine the above. For Newtonian and refractor telescopes, make sure the nosepiece fits into your telescope's focuser (1.25 inch or 2 inch barrel diameter).

Gear for Capturing Images of the Planets and Close-ups of the Moon

Planetary Imaging Camera

Portable Computer

Due to turbulence in the atmosphere, still images of planets tend to be quite blurry.

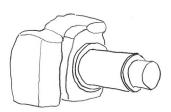

Sharper details are achievable using a process called *lucky imaging*. This involves recording video of a planet through a telescope. The idea is to capture brief moments where the view is steady.

The ideal camera for this is a dedicated *planetary imaging camera* with a high-speed USB 3 output. It requires a portable computer to record the video data (ideally one equipped with a solid state drive). Good cameras cost over \$200.

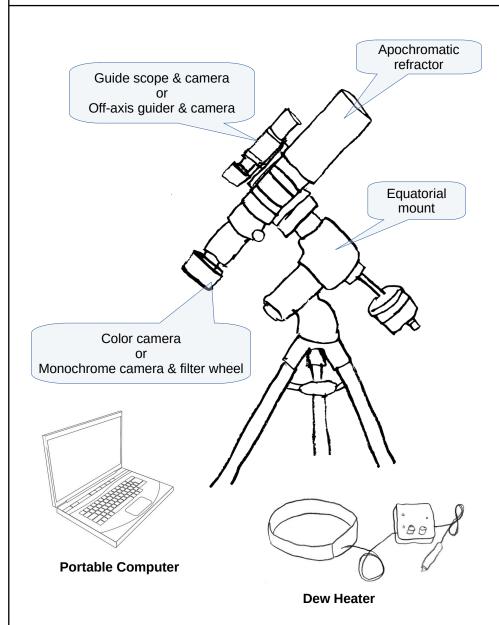
Specialized *stacking* software is required to process the best frames from the video and produce a still image. This image is then digitally sharpened to obtain a much clearer view of the planet than is possible with a single snapshot.

A motorized telescope is pretty much required for this. The more aperture, the better.

Planetary imaging is not a casual endeavour! It's not as simple as point and shoot.



Although less ideal, a smartphone mounted to the telescope via a phone adapter can also be used to record the video of a planet.


The phone's video then needs to be converted to a format supported by stacking software.

A digital camera (DSLR or mirrorless) can also be used to record the planetary video (in movie mode). It's not as ideal as a dedicated planetary imaging camera, but it can still allow you to try your hand at lucky imaging.

There are programs that can record the video from a digital camera tethered to a computer via USB.

Gear for Capturing Images of Deep Sky Objects with Optical Telescopes

Prepare to spend several thousand for a minimal setup. Much learning effort – not a casual endeavour! Only a brief overview is provided here. This is a vast subject that cannot be adequately covered in this short guide.

Imaging deep sky objects (galaxies, nebulas, star clusters) involves taking minutes-long exposures using a telescope with good tracking. Hours worth of exposures are required, then need to be *stacked* using specialized software. This can be quite technical and is not a casual endeavour!

A short focal length refractor is the best way to start and achieve satisfying results. Avoid the temptation to use a large aperture instrument such as a Schmidt-Cassegrain – that way will most likely lead to frustration.

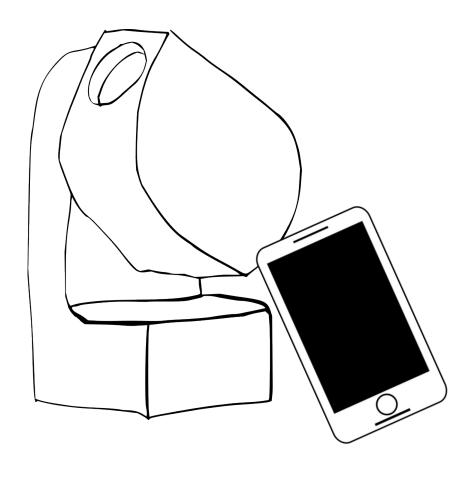
Mount options:

- German equatorial mount: best option for accurate tracking. Payload capacity should be twice the actual payload weight for massproduced mounts.
- Fork mount with equatorial wedge: not recommended.

Main camera options (least to most expensive):

- Digital camera body (DSLR or mirrorless) with adapters
- Dedicated one-shot color (OSC) astronomy camera
- Dedicated monochrome astronomy camera with filter wheel.
 More efficient at gathering light and allows narrowband imaging.

If you don't already own a digital camera (such as a DSLR), it's better to start with a dedicated astronomy camera if you can afford it.


Auto-guiding is recommended for best results. A separate guide camera and special software is used to send corrections to the mount to keep an object centered.

Guider options (requires dedicated guide camera):

- Smaller guidescope mounted to the main scope.
- Off-axis guider (OAG) uses part of main scope's light.

A portable computer is necessary if using a dedicated astronomy camera, or for running autoguiding software. This can be a laptop, a Raspberry Pi, a stick computer, or a mini computer box made especially for astrophotography capture.

Smart Telescopes: New breed of telescopes for electronically-aided astronomy

- Phone or tablet needed to operate the telescope and view images.
- Telescope finds objects automatically after an initial calibration.
- Images for deep sky objects appear in minutes. Image quality improves over time as it gathers more light from the target and performs live stacking.
- Field of view is wide.
- Far easier and quicker to set up and operate than "imaging rigs" made up of several components, but cannot match the image quality of such rigs.
- Images will not be "magazine" publishing quality except for the most expensive models with manual image processing.
- Some include an electronic eyepiece to simulate looking through a purely optical telescope.
- Brightness and colour of deep sky objects surpasses what can be seen in a visual telescope.
- Cannot match the high-magnification details of planets and moon craters seen through visual telescopes.
- For some, viewing a computer-enhanced image on a screen does not match the feeling of reaching out and touching the cosmos when observing through a visual telescope. For others, it makes the cosmos more accessible to them.
- Prices range from just under \$600 for small aperture, to over \$5000 for larger apertures.